Sunday, October 12, 2008

First Direct Evidence of Dirac Fermions in Graphite

The recent surge of interest in the electronic properties of graphene—that is, isolated layers of graphite just one atomic layer thick—has largely been driven by the discovery that electron mobility in graphene is ten times higher than in commercial-grade silicon, raising the possibility of high-efficiency, low-power, carbon-based electronics. Scientists attribute graphene's surprising current capacity (as well as a number of even stranger phenomena) to the presence of charge carriers that behave as if they are massless, "relativistic" quasiparticles called Dirac fermions. Harnessing these quasiparticles in real-world carbon-based devices, however, requires a deeper knowledge of their behavior under less-than-ideal circumstances, such as around defects, at edges, or in three dimensions—in other words, in graphite. At the ALS, a team of researchers using angle-resolved photoemission spectroscopy (ARPES) have now produced the first direct evidence of massless Dirac fermions in graphite coexisting with quasiparticles of finite effective mass and defect-induced localized states.

more

No comments: